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1 Introduction 
The finite-set statistics (FISST) approach to 
information fusion was introduced in initial form 
(random finite sets, belief measures, set derivatives) 
in the mid-1990s [1].  In its current extended form 
(probability generating functionals (p.g.fl.’s), 
functional derivatives), it dates from 2001 [2].  It was 
first systematically described in 2007 in Statistical 
Multisource-Multitarget Information Fusion [3].   
 Since 2007, the approach has inspired a 
considerable amount of research, conducted by 
many dozens of researchers in at least 19 nations, 
reported in over a thousand publications.  As a result, 
progress has been rapid and has proceeded in 
diverse and sometimes unexpected directions, 
propelled by many clever new ideas.  This includes 
several algorithms that have been shown to 
significantly outperform traditional methods. 
 The main purpose of this position paper is to 
survey the latest and most intriguing aspects of this 
research, as reported in the 2014 sequel, Advances 
in Statistical Multisource-Multitarget Information 
Fusion [4], as well as in other publications.  It is an 
update of [36], covering additional advances such as 
multisensor PHD/CPHD filters, extended-target and 
cluster-target tracking, and an approach to sensor-
network multitarget track-to-track fusion that is fully 
general, theoretically unified, and immune to 
unknown double-counting.  The paper also refutes 
several criticisms of FISST.   
 Besides references [3,4], background 
information on FISST can be found in the tutorials [5-
9], and information on specialized topics in the books 
[10] (particle filter implementation of RFS filters), and 
[11] (simultaneous localization and mapping  or 
SLAM).  The June 2014 special issue of the IEEE 
Robotics & Automation Magazine is also of interest.     
 The paper is organized as follows:  FISST in a 
nutshell (Section 2); criticisms of FISST (Section 3); 
PHD/CPHD filters, including multisensor PHD/CPHD 
filters (Section 4); the Vo-Vo exact-closed-form 
multitarget filter (Section 5); unified SLAM (Section 
6); unified track-to-track fusion (Section 7), unified 
multitarget tracking and sensor-bias estimation 
(Section 8); RFS filters for unknown, dynamic clutter 
and detection backgrounds (Section 9); track-before-
detect (TBD) filters for imaging sensors and 
superpositional sensors (Section 10); tracking of 
extended, cluster, and group targets (Section 11); 
and Bayes-optimal processing of “hard” and “soft” 
information (Section 12); Conclusions (Section 13). 

2 FISST in a Nutshell 
The point of finite-set statistics is not that multitarget 
problems can be formulated in terms of RFSs.  The 
choice of a particular mathematical formalism is of 
limited practical interest in and of itself.  The point is, 
rather, that FISST techniques provide a carefully 
constructed practitioner's toolbox of explicit, rigorous, 
systematic, and general procedures based on 
systematic statistical multisensor-multitarget 
modeling and multitarget integro-differential calculus.  
FISST addresses multisource-multitarget information 
fusion problems using the following systematic, 
three-step methodology: 
 Step 1:  Approach information fusion problems 
in a unified, statistically top-down fashion, by 
constructing comprehensive statistically accurate 
models of multitarget-multisensor-multiplatform 
systems, including top-down, comprehensive 
statistically accurate models of multitarget sensing 
and multitarget motion.  
 Step 2: Use these models to construct the 
optimal solution to the problem at hand—typically, 
some kind of multitarget recursive Bayes filter.  This 
necessitates the explicit construction of “true” 
multitarget Markov densities and “true” multitarget 
likelihood functions, using multitarget calculus. 
 Step 3:  Since the optimal solution will usually 
be computationally intractable in general, use 
principled approximation techniques to “trim down” 
the optimal solution to an approximate one that is 
tractable and  yet preserves, as faithfully as possible, 
the underlying models and their interrelationships.  
 A basic aspect of the FISST approach is a 
systematic methodology for deriving a scalable family 
of increasingly more accurate approximations of the 
optimal solutions:  
 Bernoulli Filter: This is the multitarget Bayes 
filter when the number of targets is known to be 
either  0 or 1.  It is the optimal approach for single-
target detection, tracking, and identification in 
general clutter and detection backgrounds.  
 Probability Hypothesis Density (PHD) Filter 
(Poisson approximation):  This is the least accurate 
approximation of the multitarget Bayes filter.  It 
propagates a PHD   D(xk|Z1:k)—the the probability 
that the scene contains a target with state  xk.  Its 
integral is the expected number of targets in the 
scene.  The graph of the PHD   D(xk|Z1:k)  provides 
an intensity map of the targets, with the peaks of  
D(xk|Z1:k)  corresponding to target states.         



 
 
 Cardinalized PHD (CPHD) Filter (i.i.d.c. 
approximation):  This is a generalization of the PHD 
filter that propagates not only   D(xk|Z1:k)  but also the 
probability distribution  p(nk|Z1:k)  on the number  nk  
of targets (the cardinality distribution). The CPHD 
filter has better performance than the PHD filter, but 
is more computationally demanding.        
 Multi-Bernoulli Filter (multi-Bernoulli 
approximation):  Unlike the PHD and CPHD filters, 
which compress multitarget distributions into 
summary statistics, multi-Bernoulli filters attempt to 
accurately model the multitarget distribution.  They 
often have better performance than CPHD filters, 
especially when implemented using particle methods.    
 Generalized Labeled Multi-Bernoulli (GLMB) 
Filter (GLMB approximation):  This is the currently 
most accurate approximation of the multitarget 
Bayes filter.  It is the first-ever provably Bayes-
optimal and computationally tractable multitarget 
detection and tracking filter.  
 The above family of multitarget filters is scalable 
in the following sense.  For combinatorially complex 
scenarios, such as clusters of currently-unresolved 
closely-spaced targets, PHD and CPHD filters are 
probably the computationally most attractive 
approaches.  For scenarios in which high tracking 
performance is required but combinatorial complexity 
is not too great, the GLMB filter and its 
approximations may be most appropriate. 

3 Criticisms of FISST 
This section addresses various criticisms of FISST 
that have been raised in recent years.  The 
statement of each criticism will be followed by a 
scientific refutation consisting of sequences of 
factually true statements.  (See also [4], pp. 10-15.)  
 Criticism 1:  “Point processes” are a newer, 
different, and superior approach to multitarget 
tracking than RFSs.  False.  RFSs are a widely 
accepted formulation of point process theory—see, 
for example the book [41] by Kingman.  More to the 
point:  one corollary of a well-known theorem ([40], p. 
138, Prop. 5.4.V) is this:  the instant that a point 
process is applied to practical multitarget tracking, it 
becomes “simple”—i.e., it becomes an RFS.  That is: 
“point process” alternatives to the FISST RFS 
approach differ from it only in notation and 
terminology—and so are, in this sense, copies of it.   
 Criticism 2:  The FISST multitarget tracking 
approach, based on p.g.fl.’s and functional 
derivatives, is a mere “corollary” of a 50-year-old 
paper [39] by the pure mathematician Moyal.  False.  
It is impossible for the FISST multitarget tracking 
approach to be a “corollary” of a purely measure-
theoretic paper that addressed no applications at all 
(let alone multitarget tracking)—and which appeared 
at the same time as the Kalman filter and nearly 20 
years before Reid’s MHT paper [42].   

 Reverse-engineering is fundamentally different 
than engineering.  It is easy to know the right things 
to do—and even easier to claim that these things are 
actually obvious—if someone else has previously 
shown you how to do it all in complete detail.   
 Criticism 3:  In particular, the FISST calculus 
concerns functional differentiation of p.g.fl.’s, where 
functional differentiation has exactly the same 
meaning as in [39].  False.  [39] addresses abstract 
multivariate measures defined in terms of Gâteaux 
derivatives of p.g.fl.’s; and provides no means of 
deriving concrete formulas for even those 
measures—let alone for density functions (as is 
required for practical application).  FISST, however, 
is based on Volterra’s functional derivative of p.g.fl.’s, 
which does produce concrete formulas for density 
functions [3,4].  Neither functional derivatives nor the 
term “functional derivative” appear anywhere in [39]. 
 Criticism 4:  The FISST probability generating 
functional version of Bayes’ rule ([3], Eq. (14.280)) 
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is“specialized...for multitarget tracking applications” 
and thus is not “valid for general point processes.”  
False.  This central FISST formula was derived as a 
general theorem of probability—see [3], Eqs. (G.434-
G.438). A general theorem of probability does not 
become less general because it is subsequently 
applied to multitarget tracking. 
 Criticism 5:  RFS filters are defined only for 
Euclidean state and measurement spaces RN.  
False:  In FISST, states and measurements can 
belong to any Hausdorff, locally compact, completely 
separable topological space.  In particular, in 
application they typically have the form (x,ℓ)  where  x 
∈ RN  and  ℓ ∈ L  where   L  is a finite set of labels.       
 Criticism 6:  Because finite sets are order-
independent, RFS filters are inherently incapable of 
constructing time-sequences of labeled tracks—and 
therefore are not true tracking filters.  False.  Target 
states can have the non-Euclidean form  (x,ℓ)  where  
ℓ   is an identifying label unique to each track.  Thus 
any RFS filter is, at least in principle, capable of 
maintaining connected tracks—see pp. 505-508 of 
[3].  The GLMB filter systematizes this fact.   

 Criticism 7:  Target identifiability is lost in RFS 
models.  False.  An identifying label  ℓ   can include 
target-identity information as well as track-label 
information, thus permitting target identifiability. 

 Criticism 8:  Because target identifiability is lost 
in RFS models, RFS filters require that motion 
models and likelihood functions are the same for all 
targets.  False.  Because single-target likelihood 
functions are allowed to have the form f(z|x,ℓ),  one 
can specify a different measurement model for each 
choice of  ℓ.  Also: because single-target Markov 
densities are allowed to have the form   f(x,ℓ|x′,ℓ′),  



 
 
one can specify a different Markov density  f(x|x′,ℓ,ℓ′),   
for each choice of   ℓ,ℓ′.    
 Criticism 9:  “The RFS model of the multiple 
target state is an approximation, because the Bayes 
posterior RFS is not exact, but is an approximation 
based on the earlier invocations of the PHD 
approximation used to close the Bayesian recursion.  
The Bayes posterior RFS is an approximation even 
before the PHD approximation is invoked...”  False.  
Here it is mistakenly believed that, in FISST, the 
multitarget RFS is always presumed to be Poisson 
(“PHD approximation”).  The Poisson approximation 
is merely the simplest and least accurate of the 
various FISST approximations of the random 
multitarget state.  It is not a “model” of it.  

 Criticism 10: “…The right model of the 
multitarget state is that used in the multi-hypothesis 
tracker (MHT) paradigm, not the RFS paradigm.”  
False.  If the MHT “model” is the right one, then it 
should be—as is the case with the RFS model—
provably Bayes-optimal.  But no proof apparently 
exists that MHT is Bayes-optimal, or even 
approximately Bayes-optimal.  An algorithm is not 
Bayes-optimal merely because it employs Bayes’ 
rule in some fashion.  The term “Bayes optimal” has 
a specific mathematical meaning.  In the multitarget 
case, it requires the minimization of the multitarget 
Bayes risk corresponding to some multitarget cost 
function—see Section 5.3 of [4].  

 Criticism 11:  The RFS approach is 
questionable because it is inherently computationally 
intractable, and requires extreme approximations to 
make it tractable.  This statement appears to reflect 
the existence of a double standard.  “Ideal” MHT is 
inherently computationally intractable, and can be 
made practical only by resort to rather extreme 
approximations that can severely degrade its 
performance in (for example) heavy clutter. 
 Criticism 12:  The RFS approach has not 
“panned out.”  False.  Provided that we eschew less 
generous interpretations, this criticism appears to be 
attributable to unfamiliarity with the FISST literature.  
Readers are invited to proceed further and draw their 
own conclusions.  

4 PHD and CPHD Filters 
The section is organized as follows:  CPHD filters for 
tracking in heavy, known clutter (Section 3.1); and 
multisensor PHD and CPHD filters (Section 3.2).  

4.1 Tracking in Heavy Clutter 
This section illustrates the ability of even less 
accurate RFS-based algorithms to detect and track 
multiple appearing and disappearing targets in heavy 
clutter.  The baseline computational complexity of the 
GM-CPHD filter is at most  O(m3n),  where  m  is the 
current number of measurements and  n  is the 
current number of tracks.   By way of contrast, the 

baseline computational complexity of conventional 
multitarget trackers is roughly  O(m!n!). 
 In the typical scenario pictured in Figure 1, up to 
12 targets appear and disappear while moving along 
straight-line trajectories.  The probability of detection 
is 0.98 and the clutter rate (the average number of 
clutter measurements per scan) is 100.   The target 
tracks are essentially invisible in any given frame. 
 Conventional multitarget trackers will  tend to 
exhibit combinatorial breakdown under such 
situations.  A CPHD filter, however, exhibits 
reasonable tracking performance—see Figure 1.    

 
Figure 1:  CPHD filter performance in heavy clutter 

 

4.2 Multisensor PHD/CPHD  Filters 
For more details, see  Chapter 10 of [4]. 
 The “classical” PHD and CPHD filters are 
single-sensor filters.  Multisensor PHD and CPHD 
filters exist but are combinatorial.  The heuristic 
“iterated corrector” PHD and CPHD filters are the 
most commonly-employed approximate multisensor 
PHD and CPHD filters.  They involve repeating the 
single-sensor measurement-update formulas, once 
for each sensor in turn.  However, this approach 
produces different answers depending on the order 
of the sensors.  In particular, sensors with larger 
probabilities of detection should be processed first.   
 Section 10.6 of [4] describes multisensor PHD 
and CPHD filters that are principled, computationally 
tractable, and independent of sensor order.  
 The basic idea is as follows.   Let there be  s  
independent sensors, and let   
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is the multitarget distribution “singly-updated” using 
only the measurement-set collected by the  jth 
sensor.  In what follows, “i.i.d.c.” refers to a particular 
type of multitarget distribution, one that is used to 
derive CPHD filters.    
 There are three different multisensor 
PHD/CPHD filters, base on three sets of 
approximations: 
 Parallel Combination Approximate Multisensor 
(PCAM) CPHD Filter:  The prior distribution and all 
singly-updated distributions are i.i.d.c., and all of the 
sensor clutter processes are i.i.d.c.  
 PCAM-PHD Filter:  The prior distribution is 
Poisson, all singly-updated distributions are i.i.d.c., 
and all of the sensor clutter processes are Poisson.  
 Simplified PCAM-PHD Filter:  The prior 
distribution, all singly-updated distributions, and all 
sensor clutter processes are Poisson.  
 Nagappa and Clark conducted performance 
comparisons of the following multisensor filters:  the 
iterated-corrector PHD filter; the PCAM-CPHD filter; 
the PCAM-PHD filter; and the multisensor classical 
PHD filter (the most accurate but also most 
computationally intensive alternative).  They also 
compared these with a theoretically erroneous 
“averaged-likelihood” PHD filter (see Section 10.7 of 
[4]), which causes target localization accuracy to get 
increasingly worse (rather than better) as the number 
of sensors increases.   
 Both sensors had probability of detection  0.95 
and clutter rate 10.  The performance of the filters 
was compared using a metric that accounts for the 
covariances as well as the means of the track 
distributions.  The results were as follows.  As 
expected, the multisensor classical PHD filter 
performed significantly better than the others.  The 
PCAM-CPHD filter was next while the PCAM-PHD 
filter and iterated-corrector PHD filter were roughly 
comparable.  As expected, the averaged-likelihood 
PHD filter performed worse (see Section 10.8 of [4]). 

5 The GLMB Filter 
For more detail, see [37,38] and Chapter 15 of [4]. 
 It is well-known that the Kalman filter is an 
exact-closed-form solution of the single-sensor, 
single-target Bayes filter, given that both the sensor 
statistics and target statistics are linear-Gaussian.  In 

this case, the linear-Gaussian distributions are the 
family of distributions that solves the filter.    
 In like fashion, B.-T. Vo and B.-N. Vo have 
discovered a computationally tractable exact-closed-
form solution of the single-sensor, multitarget Bayes 
filter, given that the sensor and the targets are 
described by the usual multitarget tracking models.  
The family of multitarget distributions that solves the 
filter are called generalized labeled multi-Bernoulli 
(GLMB) distributions; and the filter is accordingly 
called the GLMB filter.   Although its computational 
complexity is similar to that of track-oriented MHT, it 
is the first-ever provably Bayes-optimal and 
computationally tractable multitarget detection and 
tracking filter.  It can be implemented using particle 
methods or fast Gaussian-sum methods.  A fast 
approximation of the GLMB filter, called the LMB 
filter, is of increasing interest [14-16].  
 The GLMB filter and its approximations are 
being applied in a number of situations.  For 
example, Vo et al. have addressed the problem of 
simultaneously detecting and tracking very large 
numbers of moving targets in three dimensions [15].  
In this simulation, 1500 appearing and disappearing 
targets move along straight-line trajectories in three 
dimensions.  The probability of detection is 0.98 and 
the clutter rate is moderate:  100 clutter 
measurements per frame.  The filter’s estimates are 
essentially perfect, despite the fact that it was run on 
an ordinary laptop computer in real time.  

 A second interesting application is to 
autonomous automobiles.  Reuter, Dietmayer et al. 
have applied the GLMB filter to this problem, using it 
to track all moving objects (cars, pedestrians, 
bicycles, etc.) in the fields of view of the sensors 
[16,17].  A YouTube video of one of the tests can be 
found at [18].  The autonomous vehicle is an E-class 
Mercedes equipped with GPS, cameras, laser 
rangefinders, and radar.  It successfully operates in a 
variety of dynamic real-world conditions along a 6 km 
test course that includes a roundabout, traffic lights, 
a rural road, and urban streets with pedestrian 
crosswalks.   

6 Unified SLAM 
Adams, Mullane et al. have demonstrated that 
FISST-based simultaneous localization and mapping 
(SLAM) algorithms significantly outperform 
conventional algorithms such as EKF-SLAM and MH-
SLAM, in dense-clutter environments [11,19,20]. 
Typical results are briefly described here.   
 In one real-data experiment, the robot is a 
powerboat moving in a region off the southern coast 
of Singapore, carrying an X-band radar.  The boat 
and landmarks in the area have been ground-truthed 
using GPS.  Clutter is quite heavy.  A conventional 
MH-FastSLAM algorithm was compared to a PHD-
SLAM algorithm, with the result that PHD-SLAM did 



 
 
a significantly better job.  This was largely due to the 
fact that MH-FastSLAM generated a large number of 
false landmarks, whereas PHD-SLAM accurately 
estimated the number of landmarks.   

7 Unified Track-to-Track Fusion 
In measurement-to-track fusion, one collects 
measurement data and then uses it to improve the 
accuracy of the most recent estimates of the 
numbers and states of targets.  However, new 
challenges have arisen because of physically 
dispersed sensors connected by communications 
networks.  It is often not possible to transmit raw 
measurements in a timely fashion because 
transmission links are often bandwidth-limited.  
Emphasis has therefore shifted to the transmission 
of track data and to track-to-track fusion.   However, 
track-to-track fusion is fundamentally different than 
measurement-to-track fusion, because the latter is 
based on two assumptions: (1) measurements are 
statistically independent from time-step to time-step; 
and (2) measurements generated by different sensor 
sources are statistically independent.  
 A potential theoretical foundation for unified 
track-to-track fusion was sketched in [21].  It was 
based on a version of logarithmic opinion pooling 
called exponential-mixture fusion.  Suppose that two 
sensors are interrogating the same scenario.  
Suppose that the sensors collect respective 
measurement-sets  Z1  and  Z2,  and that respective 
multitarget track distributions  f(X|Z1)   and   f(X|Z2)   
are constructed from them.  Fuse them as follows:   
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Eq. (3) is the multitarget generalization of the well-
known covariance-intersection (CI) approach.   
 In [22], Battistelli et al. adopted this line of 
investigation to create what appears to be the first-
ever fully general, theoretically rigorous and unified 
approach to track-to-track fusion.  It is based on a 
clever application of the familiar consensus-pooling 
approach.  Battistelli et al. turn the space of 
multitarget distributions into a linear space, by 
defining the following concepts of addition and 
multiplication by a scalar:  
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They demonstrated that addition “⊕” and scalar 
multiplication “”  obey the usual rules of vector 
arithmetic.  Suppose that  f1(X),…, fs(X)   are 
multitarget track distributions supplied by distributed 
sensor sources.  Let   ω1,…, ωs   be real-number 
weights.  Then we can fuse the sources with these 
weightings as: 

f1…s    =   (ω1f1)⊕…⊕(ωsfs).                 (6) 
Consensus fusion is based on recursively exploiting 
weighted sums of this form to arrive at a solution that 
is optimal in the limit.  Furthermore, it inherits a very 
attractive property from exponential-mixture fusion:  it 
is immune to unknown double-counting of 
measurements [22].    
 In [23], Battistelli et al. devised a “consensus 
CPHD filter” implementation of the general 
consensus approach and reported good results.   

8 Unified Tracking/Bias Estimation 
For more detail, see Chapter 12 of [4]. 
 The reliability of real-world sensors and 
information sources (such as maps) is often 
compromised by spatial biases.  Such 
misregistrations result in measurements that are not 
actually located where they appear to be.  
Conventional bias-estimation approaches are 
typically limited to a single sensor and require special 
calibration data sets.  However, biases can vary over 
time; each sensor can have its own bias; and 
calibration data may not be available.   
 Recent work using FISST techniques has 
resulted in the first statistically unified multitarget 
tracking and bias-estimation algorithms.  They are 
based on the fact that “targets of opportunity” can be 
used to register sensors, even as the biased sensor 
data can be used to detect and track the targets. 
 One such algorithm, proposed in [24], is briefly 
discussed here.  The simulation involves four targets 
moving along curvilinear trajectories, which are 
observed by three sensors.  The first sensor is 
range-bearing with  probabiility of detection 0.9 and 
clutter rate 50. The second is range-only, with  
probabiility of detection 0.8 and clutter rate 60.  The 
third is bearing-only with  probability of detection 0.7 
and clutter rate 40.  The joint tracking and 
registration algorithm not only successfully detected 
and tracked the targets, but successfully estimated 
the four unknown translational biases.  

9 Unknown, Dynamic Clutter 
For more detail, see Chapter 18 of [4]. 
 Essentially all multitarget detection and tracking 
algorithms, including RFS filters, require an a priori 
statistical model of the background clutter process.  
Conventional algorithms, such as MHT, usually (but 
not always) presume that clutter is spatially uniform 
and that the probability distribution on the number of 
measurements (the cardinality distribution) is 
Poisson.  The CPHD filter allows both the clutter 
spatial distribution and the clutter cardinality 
distribution to be more general.    
 In actual application, the statistics of the clutter 
process will be both unknown and dynamically 
changing over time.  The more that actual clutter 



 
 
statistics differ from modeled clutter statistics, the 
more that tracker performance will deteriorate.    
 Recent research has resulted in “clutter-
agnostic” CPHD and multi-Bernoulli filters that do not 
require a priori clutter models  [25-28]—and which, 
moreover, can estimate both the clutter intensity 
function and the clutter cardinality distribution.   
 This work has been extended to CPHD and 
multi-Bernoulli filters that do not require a priori 
models of the probability of detection.  It has also 
been extended to CPHD filters that can, in addition to 
clutter estimation, estimate the target-appearance 
process [29].  
 In one simulation, a maximum of 10 targets 
appeared and disappeared in the scene while 
following curvilinear trajectories.  The actual clutter 
spatial distribution was non-uniform, and the actual 
clutter cardinality distribution was binomial.  The 
probability of detection was time-varying, ranging 
from 0.98 to 0.92.  Performance results show that the 
CPHD filter not only successfully tracked the targets, 
but also successfully estimated the clutter intensity 
function and clutter cardinality distribution. 

10 Track-Before-Detect Filters 
Most tracking algorithms process detection data.  
That is, a detection algorithm is applied to a sensor 
signature, and point detections are extracted from it.  
Since this loses information, it is preferable to devise 
algorithms that can directly process the “raw” 
signature data.  Such algorithms are generically 
known as “track-before-detect” (TBD) algorithms.  
Recent research has resulted in RFS multitarget 
TBD algorithms for two sensor types:  imaging 
(Section 9.1) and superpositional (Section 9.2).  

10.1 TBD for Imaging Sensors 
For more detail, see Chapter 20 of [4]. 
 Recent multitarget TBD algorithms for pixelized 
images have been based on Dempster’s 
expectation-maximization (EM) algorithm.  
Hoseinezhad et al. have demonstrated that a multi-
Bernoulli TBD filter is not only provably Bayes-
optimal, but significantly outperformed the previously 
best EM-based TBD algorithm, the histogram 
probabilistic multi-hypothesis tracker, H-PMHT 
[30,31].  Perhaps even more importantly, the 
computational complexity of this filter does not 
increase with the number of pixels, whereas that of 
the H-PMHT algorithm greatly increases.   
 The simulation scenario described here involves 
four maneuvering targets of fixed and known 
number, in a pixelized image with Gaussian 
background noise.  The particle multi-Bernoulli TBD 
filter presumes that no targets appear or disappear, 
but is otherwise ignorant of the initial target number.  
It must determine it, whereas the H-PMHT knows it 
from the outset.   

 Since H-PMHT knows the actual target number, 
it was initially able track the targets better than the 
RFS filter.  Thereafter, the H-PMHT performed 
considerably worse with respect to all measures.  
Localization error increased rapidly with time for the 
H-PMHT, whereas it was essentially constant for the 
RFS filter.  The processing time for H-PMHT was 
typically greater than that for the RFS filter.  It also 
increased rapidly with the number of pixels in the 
image, whereas processing time for the RFS filter 
was essentially flat with respect to pixel number.    
 The multi-Bernoulli filter has been successfully 
applied to real data—for example, benchmark 
streaming videos of soccer and hockey games [31].   

10.2 TBD for Superpositional Sensors 
For more detail, see Chapter 19 of [4]. 
 A second kind of TBD algorithm is required for 
superpositional sensors, such as acoustic-wave or 
electromagnetic-wave sensors.  In detection-based 
measurement models, a target can generate at most 
a single measurement, and any measurement is 
generated by at most one target.  With 
superpositional sensors, however, the measurement-
signature is typically the sum of the signals 
generated by several targets.   
 Nannuru et al. have devised a CPHD filter 
specifically designed for superpositional data 
[ 32,33].  They have employed it in two applications:  
multitarget detection and tracking using a grid of 
passive-acoustic sensors; and radio-frequency 
tomography (in which a rectangular array of RF 
transmitter-receiver pairs is used to interrogate a 
denied space such as the interior of a building).  The 
superpositional-CPHD filter significantly 
outperformed conventional Markov chain Monte 
Carlo (MCMC) techniques while being  32 times (RF 
tomography) to 80 times (passive-acoustic) faster.  

11 Extended Targets 
For more detail, see Chapter 21 of [4]. 
 The usual “small-target” model is based on the 
assumption that targets are neither too near nor too 
far from the sensor.  If a target is near the sensor, 
however, it may generate multiple detections rather 
than a single detection.  This is usually because 
multiple measurements are generated by “scatterers” 
distributed on the target's surface.  Such a target is 
called an extended target. 
 It is possible to derive filtering equations for a 
PHD filter designed to track multiple extended 
targets.  In this approach, the measurements 
generated by a single extended target are modeled 
as a Poisson process.  The measurement-update 
equation for this filter is combinatorial, since it 
involves a summation over all partitions of the 
current measurement-set Zk.  Nevertheless, recent 



 
 
research has shown how certain approximations can 
render the filter potentially practical. 

 Here we will briefly describe a “GLO 
approximation” due to Granström, Lundquist, and 
Orguner [33,34].  A partition of the measurements 
will be most “informative” if each of its cells 
corresponds to the measurement-cluster generated 
by an actual extended target.  In principle, therefore, 
the non-informative partitions can be neglected.  
Rather than using a conventional clustering 
algorithm, Granström et al. proposed what might be 
called an “n-degrees-of-separation” methodology.  
Define an equivalence relation on the elements of  
Zk.  as follows.  If  z1, z2  ∈ Zk  then  z1  ≈  z2   if there 
is a sequence  w1,…, wn  ∈ Zk  such that  w1 = z1  
and  w1 = z2, and such that, for each  i = 1,…,n−1,     
wi  is “close” to  wi+1.  The equivalence classes of  “≈”  
are the cells of an informative partition.  
 This process results in a drastic reduction in the 
number of partitions that must be considered.  For 
example, suppose that there are four targets, each 
generating an average of  20  measurements; and let 
the clutter rate be  50.  Then the average number of 
measurements in a frame is 130, and there are 
approximately 10161 partitions.  After applying the 
GLO approximation, this number is reduced to 27. 

   Granström  et al. have implemented and tested 
their PHD filter with both simulated and real data.  In 
their baseline simulations, the probability of 
detection, clutter rate, and target-measurement rate 
are, respectively,  0.99,  10,  and  10.  They 
considered a number of scenarios, including 
extended targets that cross, travel in parallel, and 
spawn a new extended target.  They have reported 
good detection and tracking performance. 

12 Optimal “Hard + Soft” Fusion 
For more detail, see Chapter 22 of [4]. 
 Quantitative evidence (“measurements”)  z  are 
mathematically represented as numbers, vectors, 
and real- or complex-valued functions.  Furthermore,  
z  is mediated by a likelihood function  Lz(x) =  f(z|x).  
This describes the probability that z will be observed 
if an entity with state x  is present.  It includes 
contextual a priori information such as sensor noise 
statistics and the membership of  x  in an ontology of 
possible target types. 
 The uncertainty in qualitative evidence involves 
three factors:  not just randomness of the 
observable, but also uncertainty in what is being 
observed and uncertainty in the modeling of both of 
these.  For example, the simplest qualitative 
observable is a quantized measurement.  The 
quantitative  z  can be observed only as a constraint  
z ∈ T  by a quantum  T (a subset of the space of 
observables).  General qualitative evidence is similar:  
z can be observed only as a qualitative constraint  z 

∈ Θ—that is, as a random constraint (random 
subset) Θ  rather than a fixed constraint T.   
 The random set  Θ  is a generalized 
measurement.  It can represent both quantitative and 
qualitative a posteriori information, including 
attributes, features, natural-language statements, 
and inference rules.  This is because expert-system 
approaches, such as fuzzy logic and Dempster-
Shafer theory, can be used to construct  Θ.  For 
example, the natural-language statement “Gustav is 
near the tower” can be encoded as a fuzzy 
membership function  g(x,y)  on the plane.  Its RS 
representation is  Θ = {(x,y) :  A ≤ g(x,y)}  where  A  is 
a uniformly distributed random number on the unit 
interval [0,1]. 
 Qualitative measurements are processed in the 
same manner as quantitative measurements.  
Generalized measurements  Θ  are mediated by 
generalized likelihood functions (GLFs) ρ(Θ|x).  
Moreover, they can be processed in a provably 
Bayes optimal fashion [4, pp. 779-782] using the 
generalized Bayes’ rule  f(x|Θ) ∝ ρ(Θ|x) ⋅ f0(x).  
Furthermore, ρ(Θ|x)  can be constructed even if the 
target ontology is qualitative—e.g., if entity types are 
only imprecisely known or even if an observed entity 
has never been previously observed.  The  GLF  
ρ(Θ|x)  is the fundamental knowledge representation 
of a posteriori knowledge  Θ, as well as of certain 
aspects of contextual information.  The general 
formula for  ρ(Θ|x)  is:  

∫ ⋅=Θ Θ zxzzx df )|()()|( µρ                      (7)                                

where  µΘ(z) = Pr(z∈Θ).  For example, for the 
natural-language statement “Gustav is near the 
tower,” µΘ(z)  = g(z).  Or, µΘ(z) = (g∧g′)(z) + 
½(1−g(z))  for a rule  g⇒g′ with fuzzy antecedent  g  
and fuzzy consequent  g′ (where  “∧”  denotes fuzzy 
conjunction). 
 The effectiveness of the approach has been 
verified by Bishop and Ristic [35].  The positions of 
five observers are known, as are the locations of 
various landmarks such as a wall, a tower, a tree, 
etc.  The observers provide the following:   

1.  Observer 1:  “The target is in the field.” 
2.  Observer 2:  “If the sun is shining then the 

target is near the pool or the 
garage.” 

3.  Observer 3:  “I do not see the target.” 
4.  Observer 4:  “The target is in front of the tower.” 
5.  Observer 5:  “The target is at one o'clock.” 

Note that  the second statement is an inference rule.   
 These statements were processed using a 
particle-filter implementation of the FISST 
generalization of Bayes’ rule.  The unknown target 
was localized fairly accurately despite the ambiguity 
of the evidence.  



 
 
13 Conclusion 
This position paper has surveyed some of the most 
intriguing advances in random set information fusion 
since 2007.  In particular, it has identified several 
random set algorithms that have been proven to 
significantly outperform conventional techniques.  It 
also provided refutations of the most common 
criticisms of FISST.   
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